

0040-4020(95)00256-1

Three New Oxylipins Related to 3,6-Dioxo-4-docosenoic Acid from Okinawan Marine Sponges, *Plakortis* spp.

Shinji Takeuchi, Takayuki Kikuchi, Sachiko Tsukamoto, Masami Ishibashi, and Jun'ichi Kobayashi*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Abstract: Manzamenones J (1) and K (2) and plakoridine B (3), three new oxylipins with unique carbon-skeletons related to 3,6-dioxo-4-docosenoic acid, were isolated from Okinawan marine sponges, *Plakortis* spp., and their structures elucidated on the basis of spectral and chemical means. Absolute stereochemisty of manzamenone A (4) was investigated by appling the modified Mosher's method developed recently for secondary carboxylic acids by Kusumi.

Marine sponges of the genus *Plakortis* have been recognized as a source of novel oxidized fatty acid-derived substances known as oxylipins.¹ During our studies on bioactive substances from Okinawan marine organisms,² we have investigated extracts of the *Plakortis* sponges, and isolated several types of aliphatic secondary metabolites with chemically unique structures including plakorin,³ plakotenin,⁴ manzamenones,^{5,6} untenone A,⁷ and plakoridine A.⁸ In connection with our interest in the biosynthesis of these unique lipids, we further examined the constituents of the same *Plakortis* sponges, and have now isolated three new oxylipins, manzamenones J (1) and K (2) and plakoridine B (3). Compound 1 is a new manzamenone congener containing a different conjugation system, while compounds 2 and 3 possess new backbone frameworks, particularly 2 consisting of cyclopentenone and dioxabicylclo[3.3.0]octane moieties. Obviously all of these metabolites are biogenetically related and 3,6-dioxo-4-docosenoic acid may be a common key intermediate. Here we also describe the study on the absolute stereochemistry of manzamenone A (4)⁵ by application of the modified Mosher's method developed recently by Kusumi and coworkers for secondary carboxyl groups.⁹

The sponge *Plakortis* sp., collected off Manzamo, Okinawa, was extracted with MeOH and partitioned between EtOAc and water. The EtOAc-soluble fraction was subjected to silica gel column chromatography, followed by gel filtration on Sephadex LH-20. The fraction containing mainly a mixture of manzamenones^{5,6} was finally purified by reversed-phase HPLC to afford manzamenones J (1, 0.0003 % yield based on wet weight) and K (2, 0.0002 %). From another *Plakortis* sponge, collected off Unten-harbor, Okinawa, the new pyrrolidine alkaloid, plakoridine B (3) was isolated in 0.0002 % yield (wet weight) from the EtOAc-soluble fraction of the MeOH extract after similar treatment.¹⁰

Manzamenone J (1) was shown to have the molecular formula of $C_{46}H_{79}O_6N$ by HRFABMS data $[m/z 742.5986, (M+H)^+, \Delta 0.0 \text{ mmu}]$, which was the same composition as that of manzamenone D (5).⁵ The UV and IR spectra of 1 were suggestive of the presence of conjugated dienone (λ_{max} 317 nm), ester (ν_{max} 1720 cm⁻¹), and amide (ν_{max} 1680 cm⁻¹) functionalities. Analysis of the ¹H and ¹³C NMR spectra of 1 aided

4 R = OH 5 R = NH₂

10 R = $NHCH(Ph)CO_2Me$

CH₃(CH₂)₁₅ H OMe (CH₂)₁₅CH₃

12

10a

by comparison with the data of compound 55 revealed that 1 contained two methoxycarbonyls, one primary amide ($\delta_{\rm H}$ 6.08 and 4.40), two tetrasubstituted olefins, three methines, and two long unbranched alkyl chains. The ¹H-¹H COSY spectrum of 1 showed two proton connectivity networks; one consisted of one methylene with one methine (H2-4 and H-5) and the other of two methine protons (H-8 and H-9) with methylene protons (H₂-26) which were further correlated to the huge methylene envelope ($\delta_{\rm H}$ 1.3 ~ 1.6). In the HMBC spectrum of 1, cross-peaks due to long-range ¹H-¹³C couplings were observed for H₂-4/C-2, H-⁵/C-1, H-⁵/C-3, H-⁵/C-3, H-⁵/C-1, H 5/C-6, H-5/C-7, H-8/C-7, and H-9/C-1, which were diagnostic for elucidating the carbon framework of 1 to lead to a bicyclo [4.3.0] nonane ring system involving a 1(6), 2-dien-7-one chromophore. The HMBC correlations for H-5/C-43, 43-NH2/C-5, H-8/C-44, and 44-OMe/C-44 indicated that the primary amide and one of the two methoxycarbonyl groups are attached at C-5 and C-8 positions, respectively. One of the two alkyl groups was shown to be substituted on C-9 by the COSY spectrum as described above, while the other alkyl group was suggested to be on C-3 on the basis of NOESY cross-peaks observed clearly for H-4a/H₂-10 and H-4a/H₂-11. The remaining one methoxycarbonyl group therefore had to be placed on C-2. The FABMS of 1 showed intense peaks at m/z 516 and 441, which were ascribable to the fragment ions due to (M – C₁₆H₃₃)+ and (M - CONH₂ - OMe - C₁₆H₃₃)+, respectively, implying that each of two alkyl chains is a hexadecyl group [-(CH₂)₁5CH₃]; this unit is generally contained in the oxylipins obtained from *Plakortis* sponges. 1.3-8 The vicinal methine protons on C-8 and C-9 were suggested to be anti since the NOESY spectrum of 1 showed substantial correlations from H-8 to H₂-26 and H₂-27, while the cross-peak from H-8 to H-9 was only weakly observed. The stereochemistry of C-5 position relative to C-8 and C-9 portion remained unassigned since no appreciable NOESY data were obtained between the two isolated moieties. From these results, the structure of manzamenone J was concluded as 1.

Manzamenone K (2) exhibited a pseudomolecular ion (M-H) at m/z 729 and an (M-H₂O+H)+ ion at m/z 713 in the negative and positive FABMS, respectively. The high-resolution analysis of the latter ion showed the molecular formula of 2 as $C_{45}H_{78}O_7$ [m/z 713.5737, (M-H₂O+H)⁺, Δ +1.7 mmu]. The UV absorption maximum of 2 (λ_{max} 225 nm) implied the presence of an enone group. Comparison of the ¹³C NMR chemical shifts for the cross-conjugated enone moiety (C-1 ~ C-3 and C-6) with those of manzamenone A (4) suggested the presence of a cyclopentenone ring system substituted by a methoxycarbonyl and an aliphatic chain at the C-2 and C-6 positions, respectively, which was corroborated by the HMBC cross-peaks of 2 for CH₃O/C-1, H-4/C-3, H₂-5/C-2, H₂-7/C-2, H₂-7/C-5, and H₂-7/C-6. Except for the alkyl chains the remaining part of the molecule was inferred to consist of an oxymethine (δ_H 5.56; δ_C 86.3), an oxygenated quaternary carbon (δ_C 89.0), a hemiketal (δ_C 108.6), an ester carbonyl (δ_C 173.8), and two methylenes whose protons resonated unequivalently (δ_H 2.76/2.18; 2.35/2.20). The deuterium induced shift in the ¹³C NMR signals between CDCl₃ and CDCl₃-D₂O solutions identified that the hydroxyl group was attached only on the hemiketal carbon (C-6'; Δ 0.09 ppm). The HMBC spectrum of 2 revealed the connectivities for H₂-2'/C-1', H₂-2'/C-4', H-4'/C-1', H-4'/C-6', H₂-7'/C-5', and H₂-7'/C-6', giving rise to the dioxabicylo-[3.3.0] octane ring system with an alkyl chain attached to the C-6' position. The γ-lactone moiety (HMBC: H-4'/C-1') had also been indicated by the IR band (v_{max} 1750 cm⁻¹), and was also embraced in the Plakortis metabolites isolated recetnly. 11 Thus, compound 2 was shown to be composed of two moieties (a cyclopentenone and a dioxabicylo[3.3.0]octane rings), which were linked between C-4 and C-3' by the HMBC correlations [H-4/C-3', H-5 ($\delta_{\rm H}$ 2.29)/C-3', and H-2'($\delta_{\rm H}$ 2.18)/C-4]. The EIMS of 2 showed intense peaks at m/z 638 (M - H₂O - MeOH - CH₂CO)+ and 414, the difference of which (224 amu) corresponded to a hexadecyl group (C₁₆H₃₃

5982 S. Takeuchi et al.

– H) assignable to the two aliphatic chains attached at C-6 and C-6' of **2**. The planar structure of manzamenone K was thus elucidated as **2**. The NOESY spectrum of **2** revealed a cross-peak between H-4 and H-4', indicating the C-3'/C-4' juncture to be *cis*, which was also suggested from the model consideration. The NOESY correlations were also observed from H-4 to Ha-7' ($\delta_{\rm H}$ 2.32) as well as from H-4' to Hb-7' ($\delta_{\rm H}$ 2.08), thus implying that H-4, H-4', and H₂-7' are located on the same side of the tetrahydrofuran ring. The relative stereochemistry of the C-4 position remains unassigned.

Plakoridine B (3) had a molecular formula of $C_{47}H_{81}O_5N$, revealed by the HRFABMS data [m/z 740.6215, $(M+H)^+$, $\Delta +2.2$ mmu]. The 1H and ^{13}C NMR spectra of 3 were almost identical with those of plakoridine A (6), 8 having a pyrrolidine skeleton with two aliphatic side chains. In the 1H NMR spectrum of 3, the two terminal methyl protons were observed as an overlapped triplet (6H), while the two terminal methyls of 6 were observed as two separate signals, indicating that the second alkyl chain of 3 is sufficiently long. The molecular weight of 3 was different from 6 by 168 amu, corresponding to twelve CH_2 units. Compound 3 was therefore reasonably assigned to a homologue of plakoridine A (6) with different length of the alkyl side chain. To elucidate the length of alkyl chains, plakoridine B (3) was treated with ozone and subsequently reduced with dimethyl sulfide to give a lactam (7) 12 and heptadecanoic acid (8), which were detected by EIMS analysis [m/z 489 (M+ for 7) and m/z 270 (M+ for 8)]. These findings firmly established the structure of plakoridine B as 3. The optical rotation of plakoridine B (3) as well as that of plakoridine A (6) 8,13 was revealed as small as zero, and the CD spectra of 3 and 6 showed no characteristic curves.

Manzamenone A (4) is the most abundant constituent of those having a bicyclo[4.3.0]nonane skeleton isolated from the two species of Okinawan *Plakortis*. The absolute stereochemistry of this compound has been left unassigned.⁵ The CD spectrum of the tetrahydro derivative (9)⁵ of the methyl ester of 4 was previously recorded to show a negative Cotton effect [λ_{ext} 325 nm ($\Delta\epsilon$ -0.27) and 286 nm ($\Delta\epsilon$ +1.0)]. Based on the chiroptic data of *cis*-hexahydroinda-1-ones, ¹⁴ 6*S*-configuration was inferred for 9. Further investigations, however, were required to confirm the assignment since the structure of 9 is much different from those in the literature. ¹⁴ Recently Kusumi and coworkers demonstrated a new methodology to determine the absolute configurations of secondary carboxyl groups based on the ¹H NMR data of their amides of (*R*)- and (*S*)-phenylglycine methyl esters (PGME), ¹⁵ which was evolved from modified Mosher's method. ¹⁶ Accordingly, manzamenone A (4) was treated with (*R*)- and (*S*)-PGME in the presence of BOP reagent ¹⁷ and Et₃N in CH₃CN. Although partial racemization at the PGME moiety occurred during the reaction, (*R*)- and (*S*)-PGME amides of 4, (*R*)- and (*S*)-10, respectively, were obtained after HPLC separation. The $\Delta\delta$ (δ_S - δ_R) values obtained from the ¹H NMR data of (*R*)- and (*S*)-10 in CDCl₃ are shown in 10a, which implied 5*R*-configuration for 4, being consistent with the inference from the CD data of 9.

Here we described the gross structures of three new oxylipins isolated from Okinawan *Plakortis* sponges as well as the study on the absolute stereochemistry of manzamenone A (4). Manzamenone J (1) possesses a common bicyclo[4.3.0]nonane ring system found in manzamenones A ~ F and H, but the conjugation system [1(6),2-dien-7-one] of 1 is new. Manzamenone K (2) comprises two structural components, and the cyclopentenone moiety is reminiscent of the structure of untenone A (11), isolated from the *Plakortis* sponge by us. Plakoridine B (3) is a homologue of plakoridine A (6) whose propyl group is replaced by a pentadecyl alkyl chain. The backbone carbon-frameworks of manzamenone K (2) and plakoridine B (3) are hitherto unknown. All three compounds (1-3) were revealed to have no cytotoxicity ($IC_{50} > 20 \mu g/mL$). From the *Plakortis* sp. collected off Unten-harbor, 5-epi-43-0-methylmanzamenone B

(12) was isolated in 0.0004% yield (wet weight) and its structure was assigned by spectral data (see, Experimental section).

We previously proposed⁷ that untenone A (11) having a cyclopentenone structure might be biogenetically derived from a precursor containing 1,6-dicarboxyl groups through Dieckmann reaction. It is another possibility that the cyclopentenone may be derived from a 1,4-dicarbonyl compound, which may be closely related to chondrillin (13).^{3,18} 1,4-Dicarbonyl compounds are known to be susceptible to intramolecular condensation to give cyclopentenones.¹⁹ These metabolites isolated from *Plakortis* sponges are all likely to be biogenetically related to one another, and 3,6-dioxo-4-docosenoic acid (A, methyl ester; Chart 1) may be a common key intermediate.

Chart 1

EXPERIMENTAL

General methods. Optical rotations were determined on a JASCO DIP-370 digital polarimeter. UV and IR spectra were taken on JASCO Ubest-35 and JASCO Report-100 infrared spectrometers, respectively.

1H and 13C NMR spectra were recorded on Bruker ARX-500 or AMX-600 spectrometers. EI and FAB mass spectra were obtained on a JEOL DX-303 and HX-110 spectrometers, respectively.

Collection, Extraction, and Isolation. The sponge Plakortis sp. (2 kg, wet weight), collected off Manzamo, Okinawa, was extracted with MeOH (7.5 L). Evaporation of the solvent afforded a residue (110 g), which was partitioned between 1 M NaCl (600 mL) and EtOAc (600 mL x 3). A part (4.0 g) of the EtOAc-soluble fraction (11 g) was subjected to two silica gel column chromatographies [4.0 x 40 cm, MeOH/CHCl₃ (1:9); 2.2 x 40 cm, acetone/hexane (1:3)]. The fraction (350 mg eluted from 590 to 760 mL) containing a mixture of manzamenones was further purified by gel filtration on Sephadex LH-20 [2.0 x 100] cm, MeOH/CHCl₃ (1:1)] to give two fractions [i (100-150 mL) and ii (160-460 mL)]. The former fraction (i) was successively separated with reversed-phase HPLC [Develosil ODS-5, (5 µm, 10 x 250 mm); eluent: CH₃CN/CHCl₃, 8:2 with 0.01 % trifluoroacetic acid; flow rate: 2.5 mL/min; UV detection at 254 nm] to afford a mixture of manzamenones D and J, which was finally purified by the same HPLC column (eluent: MeOH/CHCl₃/H₂O, 6:3.5:1) to give manzamenone J (1, t_R 46.0 min, 0.0003 % wet weight). The latter fraction (ii) of gel filtration was also purified by the same HPLC column (eluent: CH₃CN/CHCl₃, 8:2) to give manzamenone K (2, t_R 27.2 min, 0.0002 %). The EtOAc-soluble portion (5.3 g) of the MeOH extract of another *Plakortis* sponge (1 kg, wet weight), collected at Unten-harbor, Okinawa, was partially (1.0 g) subjected to a silica gel column chromatography [2.4 x 36 cm, EtOAc/hexane (2:8)]. The fraction containing a mixture of manzamenones was further purified by a Sephadex LH-20 column [2.0 x 120 cm, MeOH/CHCl₃ (1:1)], followed by separation with reversed-phase HPLC [Develosil ODS-5, (5 µm, 10 x 250 mm); eluent: CH₃CN/CHCl₃, 7:3; flow rate: 2.0 mL/min; detection: UV at 254 nm] to afford plakoridine B (3, t_R 18.0 min, 0.0001%) together with 5-epi-43-0-methylmanzamenone B (12, $t_{\rm B}$ 24.8 min, 0.0004%).

Manzamenone J (1). Colorless oil; $[\alpha]_D 1^7$ -6.1° (*c* 0.23, MeOH); UV (MeOH) λ_{max} 317 (ε 23300) and 220 nm (39000); IR (CHCl₃) ν_{max} 3480, 3370, 1720, 1680, 1625, 1595, and 1565 cm⁻¹; ¹H NMR (C6D₆) δ_H 6.08 and 4.40 (each 1H br s, 43-NH₂), 3.90 (1H, br d, H-9), 3.43 (3H, s, MeO-44), 3.39 (3H, s, MeO-42), 3.33 (1H, d, H-8), 3.24 (1H, d, H-5), 3.16 (1H, d, H-4a), 2.86 (1H, ddd, H-10a), 2.43 (1H, ddd, H-10b), 2.11 (1H, dd, H-4b), 1.78 (1H, m, H-26a), 1.10 (1H, m, H-26b), 1.6 ~ 1.3 (56H, br s, H₂-11 ~ 24 and H₂-27 ~ 40), and 0.96 (6H, t, H₃-25 and 41), [$J_{4a,4b}$ =17.9, $J_{4a,5}$ =0, $J_{4b,5}$ =9.8, $J_{8,9}$ =2.3, $J_{9,26a}$ =10.2, $J_{10a,10b}$ =15.4, and $J_{24,25}$ = $J_{40,41}$ =6.6 Hz]; ¹³C NMR (C₆D₆) δ_C 202.7 (C-7), 171.5 (C-1), 170.8 (C-43), 170.5 (C-44), 166.2 (C-42), 164.5 (C-6), 132.0 (C-3), 123.3 (C-2), 59.2 (C-8), 52.5 (MeO-44), 51.3 (MeO-42), 45.3 (C-9), 36.0 (C-10), 35.0 (C-5), 33.3 (C-26), 32.3 (C-4), 32-23 (C-11 ~ C-24 and C-27 ~ C-40), 14.1 (C-25 and C-41); FABMS (matrix: 3-nitrobenzylalcohol) m/z 742 (M+H)+; 710 (M-OMe)+, 697 (M-CONH₂)+, 665 (M-CONH₂-MeOH)+, 516 (M-C₁₆H₃₃)+, and 441 (M-CONH₂-OMe-C₁₆H₃₃)+; HRFABMS m/z 742.5986, calcd for C₄₆H₈₀O₆N (M+H): 742.5986.

Manzamenone K (2). Colorless oil; $[\alpha]_D^{17}$ -5.2° (c 0.35, MeOH); UV (MeOH) λ_{max} 225 nm (ϵ 1200); IR (neat) ν_{max} 3500, 2890, 1750, 1715, and 1480 cm⁻¹; ¹H NMR (C₆D₆) δ_H 5.56 (1H, dd, H-4'), 3.53 (3H, s, MeO), 2.76 (1H, d, H-2'a), 2.62 (1H, m, H-7a), 2.51 (1H, m, H-7b), 2.35 (1H, dd, H-5'a), 2.32 (1H, m, H-7'a), 2.29 (1H, dd, H-5a), 2.20 (1H, dd, H-5'b), 2.18 (1H, d, H-2'b), 2.08 (1H, d, H-7'b), 2.03 (1H, dd, H-5b), 1.81 (1H, dd, H-4), 1.5 ~ 1.1 (60H, br s, H₂-8 ~ 21 and H₂-8' ~ 21'), and 0.96

(6H, t, H₃-22 and 22'), $[J_{4,5a}=3.1, J_{4,5b}=7.5, J_{5a,5b}=18.9, J_{21,22}=7.1, J_{2'a,2'b}=17.9, J_{4',5'a}=6.2, J_{4',5'b}=13.3, J_{5'a,5'b}=16.0, and J_{21',22'}=7.1 Hz]; ^{13}C NMR (C₆D₆) <math>\delta_{\rm C}$ 201.1 (C-3), 186.5 (C-6), 173.8 (C-1'), 163.7 (C-1), 133.5 (C-2), 108.6 (C-6'), 89.0 (C-3'), 86.3 (C-4'), 51.9 (C-4), 51.3 (MeO), 42.9 (C-2'), 42.3 (C-5'), 34.0 (C-5), 33.1 (C-7'), 32.3 (C-7), 31-29 (C-8 ~ 21 and C-8' ~ 21'), and 14.3 (C-22 and C-22'); FABMS (negative, glycerol matrix) m/z 729 (M-H)⁻; FABMS (positive, glycerol matrix) m/z 713 (M-H₂O+H)⁺ and 349; EIMS m/z (%) 638 [6, (M-H₂O-CH₂CO-MeOH)⁺; exact mass, m/z 638.5289, C₄₂H₇₀O₄, Δ +1.5 mmu], 414 [13, (M-H₂O-CH₂CO-MeOH-C₁₆H₃₂)⁺; exact mass, m/z 414.2801, C₂₆H₃₈O₄, Δ +3.0 mmu], 357 (80), and 43 (100); HRFABMS m/z 713.5737, calcd for C₄₅H₇₇O₆ (M-H₂O+H)⁺: 713.5720.

Plakoridine B (3). Colorless oil; [α]_D¹⁷ *ca.* 0° (*c* 1.6, CHCl₃); UV (MeOH) λ_{max} 318 (ε 16000) and 224 nm (12200); IR (KBr) ν_{max} 3320, 1745, 1620, 1525, and 1470 cm⁻¹; ¹H NMR (CDCl₃) δ_{H} 7.05 (2H, d, H-29 and 33), 6.95 (1H, br s, 3-OH), 6.79 (2H, d, H-30 and 32), 5.19 (1H, d, H-3), 5.08 (1H, s, H-6), 4.75 (1H, br s, 31-OH), 3.72 (3H, s, H₃-25), 3.71 (1H, m, H-5), 3.39 (1H, m, H-26a), 3.29 (1H, m, H-26b), 2.90 (1H, dd, H-4), 2.83 (1H, m, H-27a), 2.76 (1H, m, H-27b), 2.36 (2H, m, H₂-8), 1.69 (2H, m, H₂-9), 1.3 ~ 1.2 (54H, br s, H₂-10 ~ 22 and H₂-34 ~ 47), and 0.88 (6H, t, H₃-23 and 48), [*J*₃,4=5.5, *J*_{4,5}=5.5, and *J*_{29,30}=*J*_{32,33}=8.5 Hz]; ¹³C NMR (CDCl₃) δ_{C} 199.8 (C-7), 165.7 (C-2), 154.7 (C-31), 130.0 (C-28), 129.8 (C-29 and 33), 115.7 (C-30 and 32), 90.2 (C-6), 75.9 (C-3), 65.4 (C-5), 52.5 (C-25), 52.2 (C-4), 46.2 (C-26), 43.5 (C-8), 31.2 (C-27), ~30 (C-10 ~ 22 and C-34 ~ 47), 26.3 (C-9), 22.7 (C-24), 14.1 (C-23 and 48); FABMS (matrix: 3-nitrobenzylalcohol) *m/z* 740 (M+H)+, 722 (M+H-H₂O)+, 620 (M+H-CH₂CH₂C₆H₄OH+H)+, 514 (M-C₁₆H₃₃)+, and 121 (C₂H₄C₆H₄OH)+; HRFABMS *m/z* 740.6215, calcd for C₄7H₈2O₅N (M+H): 740.6193.

Ozonolysis of Plakoridine B (3). A solution of the compound **3** (2.0 mg) in 1 mL of CH₂Cl₂ was bubbled with O₃ at -78 C° for 1 min. After the removal of excess ozone by bubbling N₂, a solution of Me₂S (20 μ L) was added, and the whole mixture was stirred at 0 C° for 30 min. Evaporation of the solution followed by HPLC [Develosil ODS-5, (5 μ m, 10 x 250 mm); eluent: CH₃CN/CHCl₃, 7:3, flow rate: 2.0 mL/min; detection: UV at 266 nm] to afford the lactam [**7**, 0.6 mg, EIMS m/z 489 (M⁺), 370 (M-CH₂CH₂C₆H₄OH+2H)⁺, and 120] and the acid [**8**, EIMS m/z 270 (M⁺), 227, 213, 199, and 185].

Preparation of PGME Amides (10) of Manzamenone A (4). To a solution of manzamenone A (4, 1.7 mg) in CH₃CN (1 mL), (R)-PGME hydrochloride¹⁵ (1.0 mg), triethylamine (0.7 mL), and BOP (1.0 mg) was added, and the mixture was stirred at room temperature for 3 min. After addition of brine, the mixture was extracted three times with ethyl acetate. The organic phase was washed successively with 2N HCl, water, 5% NaHCO₃ aqueous solution, and water, and dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was subjected to reversed-phase HPLC [Develosil ODS-5, (5 μm, 10 x 250 mm); eluent: CH₃CN/CHCl₃, 85:15 with 0.01 % trifluoroacetic acid; flow rate: 2.5 mL/min; detection: UV at 254 nm] to afford (R)-10 (0.8 mg, t_R 78.0 min) and (S)-10 (0.6 mg, t_R 74.4 min) in the ratio of 57:43. Using (S)-PGME hydrochloride, the same procedures afforded (R)-10 and (S)-10 in the ratio of 33:67. (R)-10: ¹H NMR (CDCl₃) δ_H 3.161 (H-1), 3.451 (H-2), 5.557 (H-4), 3.556 (H-5), 2.973 (H-6), 2.429 (H-26a), and 3.043 (H-26b); FABMS m/z 890 (M+H)⁺. (S)-10: ¹H NMR (CDCl₃) δ_H 3.090 (H-1), 3.431 (H-2), 5.570 (H-4), 3.604 (H-5), 2.714 (H-6), 2.410 (H-26a), and 2.999 (H-26b); FABMS m/z 890 (M+H)⁺.

5-Epi-43-*O***-Methylmanzamenone B (12).** Colorless oil; [α]_D¹⁷ -12.7° (c 0.12, CHCl₃); UV (EtOH) λ_{max} 230 nm (ε 22000); IR (KBr) ν_{max} 1730, 1720, and 1620 cm⁻¹; ¹H NMR (CDCl₃) δ_{H} 5.71 (1H,

d, H-4), 4.00 (1H, d, H-1), 3.82 (3H, s, MeO), 3.76 (1H, dd, H-5), 3.69 (3H, s, MeO), 3.67 (3H, s, MeO), 3.25 (1H, dd, H-6), 3.16 (1H, s, H-2), 3.11 (1H, m, H-26a), 2.42 (1H, m, H-26b), 2.05 (2H, m, H₂-10), 1.5 ~ 1.2 (56H, br s, H₂-11 ~ 24 and H₂-27 ~ 40), and 0.88 (6H, t, H₃-25 and 41), $[J_{1,2}=0, J_{4,5}=8.1, J_{5,6}=1.3, J_{6,1}=7.5,$ and $J_{24,25}=J_{40,41}=6.6$ Hz]; FABMS (matrix: 3-nitrobenzylalcohol) m/z 757 (M+H)+, 725 (M-OMe)+, 697 (M-CO₂Me)+, 666 (M-OMe-CO₂Me)+, and 441 (M-OMe-CO₂Me-C₁₆H₃₃)+; HRFABMS m/z 757.6029, calcd for C₄₇H₈₁O₇ (M+H): 757.6024.

Acknowledgment: We thank Prof. T. Sasaki, Kanazawa University, for cytotoxicity tests. This work was partly supported by a Grant-in-Aid from the Uehara Memorial Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

References and Notes

- 1. Gerwick, W. H.; Nagle, D. G.; Proteau, P. J. Topics in Current Chemistry, Vol. 167, Marine Natural Products Diversity and Biosynthesis; Scheuer, P. J., Ed.; Springer-Verlag: Berlin, 1993; pp 167-180.
- 2. Li, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Chem. Research in press and references cited therein.
- 3. Murayama, T.; Ohizumi, Y.; Nakamura, H.; Sasaki, T.; Kobayashi, J. Experientia 1989, 45, 898-899.
- 4. Kobayashi, J.; Takeuchi, S.; Ishibashi, M.; Shigemori, H.; Sasaki, T. Tetrahedron Lett. 1992, 33, 2579-2580.
- 5. Tsukamoto, S.; Takeuchi, S.; Ishibashi, M.; Kobayashi, J. J. Org. Chem. 1992, 57, 5255-5260.
- 6. Kobayashi, J.; Tsukamoto, S.; Takeuchi, S.; Ishibashi, M. Tetrahedron 1993, 27, 5955-5960.
- 7. Ishibashi, M.; Takeuchi, S.; Kobayashi, J. Tetrahedron Lett. 1993, 34, 3749-3750.
- 8. Takeuchi, S.; Ishibashi, M.; Kobayashi, J. J. Org. Chem. 1994, 59, 3712-3713.
- 9. Kusumi, T.; Nagai, Y.; Takahashi. H.; Kan, Y.; Hashimoto, T.; Asakawa, Y. Tennen Yuki Kagoubutsu Toronkai Koen Yoshishu 1994, 36, 128-135.
- 10. The sponges *Plakortis* sp. used in this study were the same ones as those described previously.³⁻⁸
- Horton, P. A.; Longley, R. E.; Kelly-Borges, M.; McConnell, O. J. J. Nat. Prod. 1994, 57, 1374-1381.
- 12. Synthesis of the lactam from plakoridine A (6) was described recently: Stafford, J. A. *Tetrahedron Lett.* 1995, 36, 681-682.
- 13. We previously described the optical rotation of 6: $[\alpha]_D^{19}$ -0.4° (c 0.5, CHCl₃).8
- 14. Klyne, W. Tetrahedron 1961, 13, 29-47. It may be guided by the octant rule that the negative Cotton effect for 9 was derived from a large negative contribution due to the C-2 ~ C-5 part with two long aliphatic chains being canceled each other.
- 15. (R)- and (S)-PGME were prepared from (R)- and (S)-phenylglycines (purchased from Wako Pure Chemical Ltd.) by treatment with SOCl₂ in MeOH, respectively, while (R)- and (S)-PGME hydrochlorides were both available from Aldrich Chemical Co.
- 16. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
- 17. Castro, B.; Dormoy, J.-R.; Dourtoglou, B.; Evin, G.; Selve, C.; Ziegler, J. C. Synthesis **1976**, 751-752.
- 18. Well, R. J. Tetrahedron Lett. 1976, 30, 2637-2638.
- 19. Piancatelli, G.; D'Auria, M.; D'Onofrio, F. Synthesis 1994, 867-889.